A Preprocessor Based Parsing System

Pradip Pcter Dcy, Mohammad N. Amin. and Thomas M. Gatton

School of Engincering and Technology
National University
11255 North Torrey Pines Road, La Jolla, CA 92037, U.S.A.
{pdey. tgatton. mamin}/@nu.cdu

Abstract. A preprocessor based parsing system for Tree Adjoining Grammars
is presented. The preprocessor is used primarily for organizing the data
structures required for parsing the grammar efficiently. The preprocessor works
hard in order to reduce the runtime processing load so that the parser execules
fast. At lcast onc model of Tree-Adjoining Grammars allows transfer of
significant proccssing load from the parser 1o the preprocessor since the
adjoining process can be optionally applied before runtime on tree structures.

A panallel parsing algorithm is presented that takes advantage of the
preprocessor.

1 Introduction

A preprocessor based parsing system is described in this paper. A parsing system
basically performs syntactic analyses in natural language processing [1, 2). The
parsing system described here is based on a grammatical formalism called Tree
Adjoining Grammar (TAG) developed by Joshi (3, 4, 5]. TAGs scem to be
appropriate for our purposes because: (a) they can be easily decomposed into
independent modules which can be processed concurrently, (b) they can be developed
incrementally since they represent information about the language in a highly modular
fashion, (c) they seem to have the formal properties required for processing natural
languages [S, 6] and most importantly, (d) the significant processing load of the
system can be transferred from the runtime module to the preprocessor. This paper
describes the parsing system with a model of TAGs that is appropriate for
preprocessor based parsing strategies.

Two finite sets of trees are defined by a TAG along with a composition operation
called an adjoin that recursively generates new trees by combining existing trees [3,
4]. The trees serve as structural descriptions of sentences or sentence fragments. The
central module of the parser is a pattern matcher that finds every tree that matches the
input string. If the input matches two or more trees, then it is structurally ambiguous.
If there is no perfect match then the best available approximate match can be
determined according to some heuristics. This paper is not concerned with this latter
inexact match by which semi-grammatical sentences are parsed. It considers only
grammatical sentences. The lexical categories of the input string are determined by a
lexical search. These categories are matched with the leaves of the trees stored in
TREE BANK or produced dynamically by the adjoin process as shown in Figure 1.

496 Pradip Peter Dey. et al.

AUXILIARY TREE BANK INPUT STRING

l I.F..\'*(ION

. COMPOSITF
ADJOIN oo l
. Parse
MATCH
Treces
TREE BANK

Figure 1: Major Components of a TAG Parser

The tree-bank has a set of trees that correspond to the structural descriptions of
sentences of the language. Initially, it has a well-defined set of minimal trees called
initial trees that correspond to "simple” sentences of the language. The auxiliary tree-
bank has a set of trees called auxiliary trees. Auxiliary trees are used in the adjoining
opcration to account for recursion. They do not occur independently in the language.
In order to improve the performance of the parser, three basic strategics are adopted:
(a) Adjoin is applicd before runtime through a preprocessor in order to obtain an
inflated trec-bank which is sorted according to the length of the trees; (b) the
lexicon is ordered so that a parallel binary search can be cfficiently applied; (c) the
match operation is parallelized so that millions of trees can be searched cfficiently.
Supposc the input is a string such as “The girl danced”. The parser first searches the
lexicon and finds that "The” is a determiner (D), "girl" is a noun (N), and "danced"
is a verb (V). The category sequence, DNV, for this sentence is then matched with
the leaves of the trees from the tree-bank. The tree given in Figure 2. matches the
category sequence because it has exactly the same Icaves. The result of the match is
the top tree in Figure 3. For this tree and for future references, assume N = Noun, V =
Verb, A = Adjective, NP = Noun Phrase, VP = Verb Phrase, R = Relative-Pronoun,
and S = Sentence,

S

\P vpP
VAN I
D N v

Pizare 20 At hat e ches the string “The giel danced™

A Preprocessor Based Parsing System 497

MATCH simply asks if the categories of the input string are equal to the leaf-
nodes of a tree. In the proposed parser, a large number of trees are pre-generated by a
preprocessor before runtime in order to reduce runtime processing loads. The TAG
parser has at least two advantages over classical parsers: (1) the trees are not built at
run time, so it is fast, (ii) the parser can be developed incrementally by adding new
trces to the tree-bank. Joshi and Vijay-Shankar described a sequential algorithm that
takes O (n®) time, where n is the length of the input string [6]. We describe an
algorithm that takes O(n) time. We present a parallel version of the algorithm that
achieves almost linear speed-up. TAGs can be processed very fast with appropriate
combination of parallel processing, preprocessing of certain information and heuristic
search. It is suggested that natural language systems should be designed to process
short sentences very fast, because, in ordinary interactions, a sentence will be
approximately a dozen words long. The proposed parser does not fail to process long
strings, but their processing is slower because additional runtime processing is
required for them where aids from the preprocessor are minimal. Specifically, it has to
apply adjoin in runtime to gencrate large trees for long input.

2 TAGs For Natural Language Parsing

Natural language parsing systems are usually difficult to build because they are
expected to achieve computational efficiency and linguistic adequacy. TAGs seem to
be appropriate for natural language parsing because they help in achieving these two
goals. TAGs have two types of elementary trees: initial trees (IT) and auxiliary trees
(AT). All elementary trees are minimal in the sense that they do not exhibit recursion.
Recursion is factored by the composition operation adjoin that produces composite
trees by combining auxiliary trees with initial or composite trees. The trees are stored
in the parser without words or lexical materials. If an input string matches a tree then
that tree is returned as an output of the parser after inserting the words of the input
string into the tree. A tree, 1T, is an initial tree if its root is labeled S and no other
node is labeled S. A tree, AT, is an auxiliary tree if its root and one of the leaf-nodes
(frontier nodes) are labeled by the same non-terminal symbol, not necessarily S. The
leaf-node that has the same label as the root is called the hook node of AT,. The
adjoining operation can only adjoin an auxiliary tree to a non-auxiliary tree (initial or
composite) that has at least one node whose label is the same as that of the root of the
auxiliary. This matching node in the initial or composite tree is called the target node.

An example of adjoining from English is given in Figures 3-5 for revealing its
application. An initial tree that matches English sentences like "The girl danced"” is
given at the top of Figure 3. An auxiliary tree that corresponds to an embedded clause
like "who ate fish” is given at the bottom of Figure 3. The auxiliary tree of Figure 3
can be adjoined at the NP node of the initial tree of Figure 3, because it matches with
the root of the auxiliary tree.

The ultimate result of this adjoining is the composite tree given in Figure 5 which
corresponds to the English sentence "The girl who ate fish danced”. However,
adjoining is a two step process in which the first step is shown in Figure 4. In the
first step of adjoining. the sub-trees below the target NP node of the initial tree are

498 Pradip Peter Dey, et al.

moved to the hook-node NP of the auxiliary tree resulting in the trees of Figure 4, |q
the next step of adjoining. the root of the auxiliary trec is pasted on the target node of
the initial tree. The resulting composite tree is given in Figure 5. The lexical items
are inserted into each of the trees to illustrate the correspondence between trees and

strings. The composition operation is actually applied on skeletal trees without
lexical items or words.
S
_/\
[e | vP
N\ I
D N A\’
The gird danced
NP
S
P
N VP
| A\
R v l;lP
|]
who ate Illsh

Figure 3. An initial trec at the top and an auxiliary tree at the bottom

S

@/-/\VIP

NP
,/r—\ VP
D N | (\
The grl R l EP
\Jw ate Lh
Figure 4. Sub-trees below the target node of the non-auxiliary tree are moved to the
hook node of the auxiliary tree

A Preprocessor Based Parsing System 499

Figure 5: The composite tree produced from the adjoining process

The lexicon is a database in which each word is a key and the lexical category of
the word is its main entry. Some words belong to more than one lexical categories
resulting lexical ambiguity [7, 8, 9.

The lexical items are inserted into each of the trees to illustrate the correspondence
between trees and strings. The composition operation is actually applied on skeletal
trees without lexical items or words. The lexicon is a database in which each word is a
key and the lexical category of the word is its main entry. Some words belong to more
than one lexical categories resulting lexical ambiguity {7, 8, 9].

3 Parsing Algorithms

In order to increase the speed of processing sentences of reasonable length, we
maintain a sorted tree-bank with initial and pre-generated composite trees. That is, all
trees a maximum of 7 adjoining are pre-generated before runtime and stored in the
tree-bank. The trees are ordered in the tree-bank according to their length. All trees of
the same length are stored in the same sub-tree-bank marked by the length of the
trees. The length of a tree is the number of leaves it has. Depending on the length of
the input string, only one of the sub-tree-banks is selected for an exhaustive search.
The length of each tree in that sub-trec-bank must be equal to the input length. This
strategy along with some heuristics allows efTicient searching of the tree-bank. The
tree bank (TB) is managed by the procedure PARALLEL-PREGENERATE. l.t pre-
generates composite trees with a maximum of M adjoining and inserts them in the
sorted tree bank, where M is an integer. We initially set M to 7. Thc_;l\D.lOlN
procedure follows the steps outlined informally in section 2. It takes an auxiliary tree
and a non-auxiliary (initial or composite) tree as arguments and returns z composite
trees by adjoining the auxiliary tree at z occurrences of the root of the aux!hary tree in
the non-auxiliary tree. In order to pre-generate a large number of composite trees and
maintain them in a sorted tree-bank, can also be used during runtime. It is an
asynchronous algorithm.

300 Pradip Peter Dey. et al.

Procedure PARALLEL-PREGENERATE(FRONT, AT, TB, M)

FRONT = {1, l. .., I }. a finite set of non-auxiliary trees. Initially FRONT has
only initial trees. AT = {AT, ATa. ..., ATy |. a finite set of auxiliary tregs, B =
(T\. Ta ... TL). an ordered set of non-auxiliary trees. Initially we present the

PARALLEL-PREGENERATE procedure, which is usually applied before runtime

although it TB has only initial trces. M = The maximal number of adjoining
desired in atree.

begin

OPEN € FRONT // FRONT is copied to OPEN

2 Ford=1 10 M do

begin
3 FRONT € ()
4 For j=110 | OPEN | create process j

// create a process for each tree in OPEN

5 In cach process j :
5.1 r € OPEN,
52 For h=110 | AT| Crcatc process h
5.3 In cach process h:
5.3

o] ct € ADJOIN(AT, r)

332 Fori=11to]ct]Create process i

5.33 In cach processi ¢

5.3.3.1 TB € UPDATE(ct;,, TB, FRONT)
if ct; isnot in T then TB € INSERT(ct;,
TB) & FRONT € FRONT U ¢y,

6 Synchronize

7 OPEN € FRONT

end
8 ReturnTB
end

Parallelism in the PARALLEL-PREGENERATLE procedure is achieved mainly by

data partitioning, 1t will generate parse trees with desired number of adjoining betore

runtime. For cfficient runtime execution of the parser the PARALLELPARSE
procedure is given below.

Procedure PARALLELPARSE(FRONT, AT, TB, W, L, M)

FRONT = {1, I, ..., l¢}. a finite set of non-auxiliary trees. AT = [AT, ATy, ...,
AT, §, a finite set of auxiliary trees. TB = (T,, Ta ..., T,), an ordered set of non-
auxiliary trees. FRONT is a subset of TB. W = {W,, W, ..., W, }, the input
stiring. L ={L,, Ly ... L, } an ordered set of words called lexicon, M = The
maximal number ol adjoining desired in a tree.

Output: AS = Ambiguity sct, i.c., a set of trees that match W

A Preprocessor Based Parsing System 501

begin
| CAT € CATEGORIES(W,L)

// CATEGORIES returns a sequence or lexical categories
2 n € LENGTH(W) //The input length is assigned to n
3 SUBTB € BINARY(TB, n)

// BINARY retums a subset of TB containing trees of length n
4 AS € MATCH(SUBTB, CAT)

// MATCH returns a subset of SUBTB that matches CAT
5 DYN € PRUNE(FRONT, CAT)

// PRUNE returns a subset of FRONT appropriate for CAT
6 ATB € PRUNE(AT, CAT)

// PRUNE returns a subset of AT
7 If DYN and ATB are both non-empty then do:

begin
8 LOOP:
9 TEMP € () // TEMP is initially empty
10 Create a process j for each tree in DYN
I In each process j :
11.1 Create a processes h for each tree in ATB
11.2 In each process h:
11.2.] CT € ADJOIN(AT,, DYNj)
11.2.2 CTS € MATCH(CT, CAT)
11.2.3 AS € ASUCTS
11.24 CT €CT-CTS
11.2.5 TEMP € TEMP U REVISE(CT, CAT)

// REVISE returns a subset or CT
12 Synchronize
13 DYN €« TEMP
14 if (DYN != nil)then Goto LOOP
// If DYN is non-empty, then goto LOOP
end
IS retum AS
end

For input strings of reasonable length, steps 8 through 14 are not executed. For
these strings, step 4 determines the trees that maich them and these trees are retuned
in step 15. Steps 8 through 14 are used for dynamic adjoin which is avoided as.n?uc.h
as possible, because dynamic adjoin is not efficient. However, if dynamic adjoin is
used, then it stops at step 14 when DYN becomes empty. If the dynamjc adjoin is
successfully avoided then the worst case computational time is propomonal_to the
number of trees in the tree-bank. It is expected that an implementation of
PARALLELPARSE will achieve almost linear speed up. This expectation is based on
the assumption that the synchronization and inter-process communication qverhcads
can be kept at a minimal level, since each process can perform its work

independently.

502 Pradip Peter Dey. et al.

4 Concluding Remarks

Performance of natural language parsing systems can be improved if the input string
length is restricted to a reasonable number. It the input string length is not restricteg
then the proposed parser will take additional time for processing. For any rcasonablé
application, parsing natural language demands both computational efficiency and
linguistic adequacy. Computational efficiency can be achieved by parallel processing
of TAGs with pre-runtime processing of certain information, and heuristic strategjes,
Linguistic adequacy can be achicved by a TAG with its formalized structure
generating mechanism and incremental development of language based structures,
Syntactic structures or trees can be added incrementally to the tree-bank of the TAG
parser anylime. Recent advances in semantic processing of TAGs suggest that TAGs

present a viable alternative for application development using natural languages such
as English (3].

Acknowledgement:

We are grateful to Juan Espana, Jose Contreras and many others for their help,
comments and encouragements.

References

(1] Jurafsky. D. et al, Speech and Language Processing: An Introduction to Natural Language
Processing, Computational Linguistics and Speech Recognition, Prentice Hall, 2000.

[2] Allen,). Natural Language Understanding (2nd Ed.), Addison-Wesley, 1995.
[3] Abcillé, A., Rambow, O., Tree Adjoining Grammars, University of Chicago Press, 2001.

[4) Joshi, A. K., Levy, L. S. "Trce Adjoining Grammars”, Journal of the Computer and
System Sciences, 1975, 10: 136-163.

[5] Joshi. A. K. "Tree Adjoining Grammars: How Much Context Sensitivity is Required to
Provide Reasonable Structural Descriptions?”, 1985, in Dowty et al (cds)., Narural
Language Parsing.

[6] Vijay-Shankar, K, Joshi, A. K. "Some Computational Properties of Tree Adjoining
Grammars", Proceedings of the 23rd Annual Meeting of the ACL, 1985, 82-93.

(7] Dey. P., Bryant, B., Takaoka, T. "Lexical Ambiguity in Tree Adjoining Grammars”,
Information Processing Leters, 34, 1990, 65-69

[8] Schabes, Yves, Waters, Richard C. : Tree Insertion Grammar: Cubic-Time, Parsable
Formalism that Lexicalizes Context-Free Grammar without Changing the Trees Produced.
Computational Linguistics 21(4), 1995, : 479-513

[9] Joshi, Aravind K., Schabes, Yves: Tree-adjoining grammars and lexicalized grammars.

